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AIIItnct-This paper examines the problem of the steady state thermoelastic behaviour of an
external circular crack located in a transveneJy isotropic elastic medium. The surfaces of the c:rac:k
are subjected to a symmetric temperature distribution. The mathematical analysis of the problem
is approached via a Hankel transform development of the governing equations. Numerical results
presented in the paper illustrate the manner in which the thermoelastic stress intensity factors are
governed by the elastic and thermal properties of the transversely isotropic elastic solid.

1. INTRODUCTION

The problem of determining the thermal stresses and stress intensity factors in elastic
media containing cracks or planes of discontinuities has attracted considerable attention.
The results of such investigations have important engineering application in the study of
fracture mechanics of structural components subjected to adverse environmental effects.
The earlier studies ofthermoelastic behaviour ofcracks are due to Olesiak and Sneddon[l].
They examined the steady state thermoelastic behaviour of a penny-shaped crack, the
surfaces of which are subjected to a prescribed heat flux. A Hankel transform technique
is used to formulate the mixed boundary value problem as a set of dual integral equations.
The case in which the surface of the penny-shaped crack is subjected to antisymmetric
heat fluxes was examined by Florence and Goodier[2]. Kassir and Sih[3] and Kassir[4]
considered the thermoelastic external crack problem for an isotropic elastic material
calculated the stress intensity factor and determined the extent of the plastic zone around
the leading edge of the crack. The Dugdale type plastic behaviour approximately models
the ductile behaviour of the material. More reccntly, Tsai[S,6] examined the thermoelastic
problem of a penny-shaped crack in a transversely isotropic medium by employing Hankel
transform techniques and double integration techniques.

In this paper we examine the thermoelastic problem for an external circular crack
which is located in a transversely isotropic elastic solid. The principal axis of transverse
isotropy (for both plastic and thermal responses) lies normal to the plane of the external
crack. The temperature on the faces of the crack are assumed to be nonuniform. Again,
the mathematical analysis of the problem is approached by adopting a Hankel transform
development of the problem. Numerical results are developed to illustrate the manner in
which the stress intensity factor for the crack is influenced by the elastic and thermal
properties of the transversely isotropic material.

2. AXISYMMETRIC EQUATIONS OF THERMOELASTICITY

Consider an infinite transversely isotropic elastic solid containing an external circular
crack of unit radius in a plane of the solid. In cylindrical polar coordinates (r, 9, z), let the
faces of the crack be assumed as r > 1, z = O± with the origin of the coordinate system at
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Fig. 1. Geometry of external circular crack.

the centre of the crack. It is assumed that the crack opens symmetrically by the application
of a temperature distribution. Since the thermal and mechanical conditions on the crack
exhibit a state of symmetry about the plane Z =0, we may restrict the discussion to the
study of a single halfspace region 0 < Z < 00, where the bounding smooth plane surface
Z = 0 is subjected to appropriate mixed boundary conditions. The displacement vector will
have the components (140, w) and the non-vanishing components ortbe stress tensor will
be Un> U,., u., and Clrs ' The geometry of the crack problem is shown in Fig. 1.

Under steady state conditions, the temperature field T= T(r,z) at any point satisfies
the steady state beat conduction equation

(1)

where p" =kJk, is the ratio of the coefficients of thermal conductivity along the z-axis
and in the z-plane. In terms ofdisplacements, the equations ofequilibrium for atransversely
isotropic material are given by

(2)

(3)

where

(4)

and 1X1 and (l2 are the coefficients of linear thermal expansion along and perpendicular to
the z-axis. Equations (1)-(3) are to be solved, subject to the following boundary conditions:

aT =0,az
T= T(r),

o~ r < I,

r> 1,

z =0,

Z = O.
(5)
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and

w(r,O) =0,
U.(r, 0) = - O'(r),
Ur.(r,O) = 0,

o~ r < 1,
r> 1,
o~ r < 00.

(6)

Also, the displacements and stresses derived from the analysis should reduce to zero as r,
z .... 00. Also the functions T(r) and O'(r) appearing in boundary conditions (5) and (6),
respectively, must be bounded at infinity.

3. THE STEADY STATE TEMPERATURE DISTRIBUTION

The Hankel transform solution of eqn (1) takes the form

(7)

where Jo(er) is the Bessel function of the first kind of order zero and Ace> is an unknown
function of ewhich should be determined by satisfying boundary conditions (5). Equation
(7), with the aid of boundary conditions (5), gives a set of dual integral equations

(8)

(9)

The solution of the dual integral equations, eqns (8) and (9), is given by Lowengrub and
Sneddon[7]. Assume that A(e) admits a representation of the form

(10)

where

tJ>'(t) = ~~.

The expression for the temperature function can be written as

(11)

(12)

(13)
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From eqn (13) we find that
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l
~ ¢'(t)dt

T(r,O) = - 2 21/2'
m"O,r) (1 - r )

(14)

Making use of the analysis given in the appendix we can obtain the displacements and
stresses at any point in the following forms:

w(r,z) = i"" [~~B(~)e-~:/ml + ~~C(~)e-~:/m2 + J.L2 c 1A(~)e-~:lpJJo(~r)d~
o ml m2 P

u::(r, z) =1""[(~f C3J - CI3)~2B(~)e-~:/ml + (~~ e3J - CI3)~2C(~)e -~:/m2

+ (~; C33 - J.LI C13 - b2) A(~)e-~:/PJJo(~r)d~

ur.(r, z) = C44 i"" [1 ~ Al ~2B({) e - ~:/m, + 1~ )'2 ~2 C(~)e-~:/m2
o I 2

With the help of boundary condition (6h and eqn (1Sh we get

(15)

(~)cw + (Ill; 1l2)A(~)C2

C~IAI)
(16)

Using eqns (ISh and (ISh we can write boundary conditions (6)1 and (6h as

where
~2C(~) = D(~),

N - A2 _ AI(J.LI + J.L2)
I - P P(1 + ),d '

N - ~ _ A1(1 + )'2)

2 - m2 m2(1 + AI)'

(17)

(18)

(19)
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where A(e) is known from eqns (10) and (11). D(e) is an unknown function to be determined
from eqns (17) and (18). Equation (10) can be rewritten as

A(e) = 4>(l)sin@ + ef" 4>(t)cos(et)dt. (20)

Making use of eqns (10) and (20), we can write dual integral equations, eqns (17) and (18),
as

where

f(r) = ~;::1 4>(1)

(21)

(22)

(23)

r> 1 (24)

where the prime denotes the derivative with respect to t.
From Noble[8], the solution of the dual integral equations, eqns (21) and (22), can be

written as

D(e) = ie[f F(x) cos (xe) dx + f':> G(x) cos (xe) dx]

where

and

(OX> rg2(r)dr
G(x) = JJ< (r2 _ X2)1/2'

Using integration by parts, expression (25) can be rewritten as

DW =i[F(l)SinR) - G(1)sin e - f F'(x) sin (xe)dx -lOX> G'(x) sin (xe) dx]

we find that

(25)

(26)

(27)

(28)
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Making use of eqns (10), (28) and (29) we have

(29)

The expression for the stress intensity factor can be written as

and with the help of eqns (30) and (31) we get

It follows that

1 < r.

(31 )

(32)

(33)

4. CRACK SUBJECTED TO NON-UNIFORM TEMPERATURES

If the temperature variation on the crack faces is such that

then eqn (11) yields

T(r,O) = To,g(r), g(r) = r- n
, n> 1, r> 1 (34)

A..( ) = To r(n/2 - 1/2)t1
-

n

'I' t Jrr r(n/2) , n> 1 (35)

where r(n) is the Gamma function. Putting l/>(t) into eqn (14) and carrying out the
integration, T(r,O) is obtained in the form

l"(r 0) = To(n - 1)r(n/2 - 1/2) r-nB 2(n/2 1/2)
, 2Jrrr(n/2) r"

where BJm, n) is the incomplete Beta function defined by

0< r < 1, n> 1 (36)

BJm,n) = ry'"-I(1 - y)n-l dy, Re[m] > 0, Re[n] > O. (37)
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We find that

(38)

If O'(r) = 0, then making use of eqns (24), (27) and (35) we get

Making use of eqns (35), (38) and (39), we find from eqn (30) that

(40)

Using eqns (32), (35), (38) and (39), the stress intensity factor can be written as

The expression for the displacement component can be written as

w( 0) = 10 r«n - 1)j2)N [N1 - N3J1-11 B - [! 1- (~)J
r, 2J7t nnj2) 2 Nz N. r x 1-r 2 2' 2'

1 < r.

(41)

(42)

The values of the clastic constants (Cll' CU, CU, C33' CI,.4), the coefficient oflinear expansion
«(Xl' (Xz) and the ratio fJz of the coefficients of cadmium material are given as follows:

Cu = 11 X 1010,

C33 - 4.69 X 1010,

(X2 = 20.2 X 10- 5,

Cu = 4.04 X 1010,

c•• = 1.56 X 1010,

fJ2 - 1.

Cu - 3.83 X 1010,

(Xl - 54 X lO- s,

The elastic constants for magnesium are given as follows:

CII - 5.97 X 1010,

C1,.4 - 1.64 X 1010,
p2 -1.

Cu - 2.62 X 1010,

(Xl == 27.7 X lO- s ,

Cu - 2.17 X 1010,

(Xz - 20.2 X lO- s,

The elastic constants e'j are in units of N m- 2 and (x, is in eC)-1. The variation of the
stress intensity factor with temperature distribution defined by eqn (34) is shown in Fig.
2. As temperature decreases, the stress intensity factor decreases for both cadmium and
magnesium materials.



410 B. M. SINGH el al.

0.3

0.2

0.\

0.0

(M""",,,m

o 2 4 6 8 10 12

n

Fig. 2. Variation of stress intensity factor with temperature.
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APPENDIX

For determining the displacements and stresses, let us take

a
u(r,z) =a;(tP + Ill"') (43)

(44)
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where. and 1/1 are functions of rand z only, A., IJI and liz arc material constants. Now substituting cqns (43)
and (44) into cqns (2) and (3) will be satisfied if

(45)

(46)

(47)

(48)

To find the solution of cqns (46) and (48) we assume that

(49)

Making usc of cqns (46) and (48) we find from eqns (7) and (49) that

(SO)

(51)

From cqns (SO) and (51) we get

/1Z[b l(cl3 + c..)/1z + bZ(C44 - /1zc ll )]

liz = (c.. - /1zC Il XC33 - /1ZC44) + /1Z(CI3 + C44)Z·

Equations (SO) and (51) will give non-trivial solutions provided

(52)

(53)

or

(54)

The solutions of equations of equilibrium involving tP<r,z) given by eqns (45) and (47) can be easily found
in tenns of two stress functions. I(r, z) and tPz{r, z) and the expressions for the strcsscs and the displacements
can be obtained from the results given by Sharma and P1adesh[9] in the following fonn:

(
oZ 10) oZ

tI.. = c13 orz +;:a;: (tPl + tPz + 1111/1) + C33 ozz (A.ltPl + A.ZtP2 + IlzI/I) - bzT

oZ
tI,. = c44 o,oz[(1 + A.I)tP1 + (l + A.Z)tP2 + <Ill + IJz)t/l]

a
U= a;:(.1 + tPz + 1111/1)

a
w = OZ (A.ltPl + A.ztPz + Ilzl/l)

where .I(r, z) and tP2(r, z) are the solutions of the partial dill'ercntial equations

(55)

i = 1,2 (56)

where m~ and m~ arc the roots of the quadratic cqn (54), and A.I and A.z arc two values of A. corresponding to
mj and mj, respectively. Solution of eqn (56) can be written as
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(57)

(58)

where BW and C(~) are both unknown functions to be determined from the elastic boundary conditions (6).
Inserting the values tPl(r, z), tPl(r, z), T(r, z) and !/t(r, z) from eqns (57). (58), (7) and (49) in eqn (.55) we obtain the
displacements and stresses at any point in the fonn given in eqn (IS).


